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MODELING TWO-DIMENSIONAL FREEZING
USING TRANSFINITE MAPPINGS AND A
MOVING-MESH FINITE ELEMENT TECHNIQUE

Mary Remley Albert

INTRODUCTION

Freezing phase change problems in heat transfer represent a set of moving boundary problems
for which there is wide application. Ground freezing and freezing in pipes are two of many areas
in which two-dimensional freezing may occur; they represent problems for which available analyti-
ca solutions are severely limited. Therefore, a numerical solution is sought. In these heat conduc-
tion problems the latent heat at the phase interface represents a discontinuity in the governing - "
equations, for which special numerical procedures must be adopted. A variety of numerical tech-
niques have been presented in recent years that attempt to deal with this discontinuity.

One of the most sophisticated techniques involves the use of finite elements where the mesh
moves continuously during the solution of the problem, so that the phase interface will always
coincide with element boundaries (Lynch and O'Neill 1981, O'Neill and Lynch 1981, Lynch 1982a).
This method was chosen as the basis of the model presented here because it provides a smooth and
accurate means of tracking the phase front and calculating temperature distributions. In addition,
because element and phase boundaries always coincide, the method allows clear specification of
conditions at the phase boundary. This is essential in cases where there is flow in the unfrozen
region.

An important problem associated with the moving mesh method involves the specification of
movement of interior nodes during the simulation. Because the phase boundary may travel large
distances and undergo a significant change in shape in the course of the solution, the interior nodes
of the mesh must also move to keep the mesh in a reasonable geometrical form. The method to
specify the evolution of the interior mesh should be capable of generating interior node locations
given a minimum amount of information, it should specify the mesh so that the mesh does not get
tangled, and the computations involved should be capable of automation within the usual finite
element time stepping procedure (Lynch 1982a). In the work presented here, recent advances in
automatic mesh generation are investigated as a new means of specifying the interior mesh for
each time step. A two-dimensional fimite element program is developed using transfinite mappings
in conjunction with a moving mesh. The program uses linear triangular elements and is able to
model either Cartesian or (rz) cylindrical coordinates. Solutions obtained from the program are
shown to compare well with analytical solutions.

The method is applied to two problems of practical interest. It is used to model a two-dimen-
sional situation involving freezing, where experimental results are available, and the numerical and



experimental results compare very well. Also, it is used to model two-dimensional freezing in a
pipe, where flow through the pipe is driven by a head drop.

While verifying the method it was discovered that numerical distortions of the temperature solu-
tion sometimes occur when a region of the mesh containing large elements is moved at a high veloc-
ity. This is a new finding with respect to moving mesh methods used for heat conduction, and is
due to the occurrence of a large Peclet number in these circumstances. Other researchers have ob-
served that large Peclet numbers yield numerical difficulties in modeling convection on a fixed
mesh. This effect is discussed further in the context of a von Neumann stability analysis.

PREVIOUS WORK

The heart of this report lies in the marriage of the transfinite mapping method of automatic
mesh generation with the moving-mesh finite element technique. In the past, automatic mesh-
generation techniques have been used primarily as a method of initial input for conventional finite
element analysis, where the mesh does not move. The moving-mesh finite element technique has
been used to model phase change, but never in conjunction with the use of automatic mesh-gener- -

ation techniques. Thus, the discussion of previous work must be divided into two sections: 1) nu-
merical methods that have been used to model phase change in conduction heat transfer, and
2) automatic mesh-generation techniques.

Numerical methods used to model phase change
The problem of modeling heat conduction with a freeze-thaw change of phase has been ad-

dressed by many analysts; consequently many methods exist for solving the problem. The brief
review here will consider only methods that may be used in modeling phase change in two or
three dimensions.

There are two general types of approach used for the problem. The first type solves for conduc-
tion heat transfer using traditional fixed-mesh finite elements or finite differences where the phase
front progresses through the stationary mesh. The discontinuity at the phase boundary is handled
by adjusting the heat capacity or enthalpy condition in elements containing the boundary. The
second approach involves the use of a mesh in which the phase boundary always lies on particular
numerical boundaries, such as element boundaries, and the latent heat condition is imposed on
that boundary.

The most basic method using the first approach is the "excess degrees" method (Dusinberre
1949). Here the heat conduction equation is solved as usual, and an enthalpy budget is maintained
for nodes along the phase front. The temperature of these nodes is held constant until the heat
equivalent to the latent heat has accumulated; the front is then allowed to progress to the next set
of nodes. Thus, the front jumps from node to node. The "apparent heat capacity" method
(Bonacina and Comini 1973) is similar, except that no enthalpy budget is maintained. Instead,
nodes representing the phase front have their heat capacity redefined so that the effect of the la-
tent heat is included. The location of the phase front is not distinct but is usually estimated by
interpolating temperatures. This results in a step-like approximation of the front location in time. -
Although relatively crude, methods where the phase front progresses through a stationary mesh
have the advantage that multiple locations of the phase front are possible, and phase fronts may
appear and disappear during the course of the solution, making the approach flexible. Figure 1
illustrates the mesh and phase front locations in a fixed mesh approach (apparent heat capacity,
for example) and in a moving mesh approach.

The second, more sophisticated approach involves the use of a mesh in which the phase bound-
ary always lies on particular numerical boundaries. Here the location of the phase front progresses
smoothly in time. Having the phase front located on element boundaries permits the method to
be used in the more general situation where convection may occur in the unfrozen region.

The "isotherm migration" method was developed by Crank and Prahle (1973). It involves a
coordinate transformation on the temperature and one of two space variables, so that the location
-if the phase change isotherm coincides with numerical boundaries. The problem is then solved on
a fixed mesh. Due to the limitations of the boundary conditions and the temperature distribution

2
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a. Use of apparent heat capacity method with b. Use of moving mesh with triangu-
finite differences. Solid dots represent nodes, lar finite elements. Te phase front
and stars represent the interpolated location of lies along the highlighted element
the phase front. boundaries.

Figure]1. Two approaches for determining phase front locations.

on the boundary, this method is not completely general. Sparrow et al. (1977) perform a coordi-
nate transformation on spatial variables in the (rz) cylindrical coordinate system, so that the fixed
finite difference mesh has element boundaries that always lie on the phase boundary. Computa-
tions are performed on a fixed mesh in the transformed space, and the dependent variable is inter-
p olated in progressing from the mesh for one time step to the mesh in the next time step. Saitoh
(1978) expands the one-dimensional spatial coordinate transformation presented by Landau
(1950) to two and three dimensions, using an (rO) cylindrical coordinate system. Finite differ-

~ences on a fixed mesh are used, and the phase boundary is fixed with respect to the transformed
coordinates. While his method is general in theory, the form of the governing equation becomes
very complicated, and special consideration is required in the formulation when boundaries are
not smoothly shaped. O'Neill (in press) analyzes phase change using the boundary integral equa-
tion method, keeping the phase front location stabilized on a mesh. Since the temperature distri-
bution within each phase has a steady-state profile, this represents a special case.

Keeping the idea of maintaining the phase boundary on particular element boundaries, Bonnerot
and Jamet (1977), Lynch and O'Neill (1981), O'Neill and Lynch (1981) and Lynch (1982a) use fi,

nite elements on a mesh that moves in time so that the phase front always coincides with certain
element boundaries. Numerical computations are performed in the original coordinate system.
Bonnerot and Jamet (1977) use finite elements in both space and time, where the effect of finite
element formulation in time automatically accounts for the effects of mesh deformation. Lynch
and O'Neill (1981) use finite differences in time, and mesh motion effects appear as a velocity term
in the governing equation. In Lynch and O'Neill (1981) Hermite basis functions are used to
solve one-dimensional problems. In O'Neill and Lynch (1981) these results are compared to re-
sults obtained using linear basis functions. Lynch (I1982a) uses the method to model phase
change in Cartesian coordinates in two dimensions, where interior node movement is specified
by the recurrent solution of the equations of elasticity. Lynch shows that the approaches taken
by Bonnerot and Jamet, Saitoh, Lynch and O'Neill, and O'Neill and Lynch are mathematically

l _ the same, although Saitoh's approach may seem different conceptually.

Automatic mesh-generation techniques
Automatic mesh-generation techniques have been employed to generate initial finite element

meshes for use in any kind of finite element model where the mesh is stationary. In this Work it
has found a new use. At each time step in the solution of the phase change problem, a new loca-

l/ ldon of the phase boundary and possible reassignment of node locations on other boundaries give

rise to the need for a new interior mesh to be specified. Automatic mesh-generation techniques

* S S 09* S 0 * * 3



were investigated as a means of specifying new interior node locations because these techniques

appear to provide a means of specifying a new mesh in a smooth, unique and simple manner.
In the current literature on mesh generation there are three prominent methods: 1) Laplacian

schemes, 2) use of isoparametric coordinates, and 3) use of transfinite mappings.
The Laplacian scheme defines the location of interior nodes as

pi = 4(Phl Pi *P

where pi represents the coordinate x i or y i of the ith node on the interior of the grid, and p. repre-
sents the coordinate of the jth node directly connected by an element boundary to the ith node.

This can be interpreted as the use of the Laplacian finite difference operator on a rectangular grid
(Buell and Bush 1973). There are variations of the method. For example, Herrmann (1976) ex-
tends the method to more general grid types and combines the use of the Laplacian scheme with
isoparametric mappings. Denayer (1978) presents techniques for generating element connectivity
and improving the computational efficiency of the method. Laplacian methods yield meshes in
which nodes are fairly evenly spaced within the region (not always a desired effect). They may
require excessive computation in generating a mesh recurrently during the solution of a problem.

The other two methods use a mapping of the unit square onto the region to be described by a
mesh. This unit square may be easily divided by straight horizontal and vertical lines, producing
a checkerboard pattern; this system of subdivisions can be mapped back to the original region. A
checkerboard requires only a simple programmed algorithm to generate coordinate and incidence
lists.

The use of isoparametric coordinates to generate a mesh is an extension of the use of isopara- _.
metric coordinates for curvilinear finite element analysis (Zienkiewicz and Phillips 1971). Shape

functions are associated with each of the boundary nodes, and the interior coordinates are a linear
combination of the product of each boundary node and its shape function. A major restriction
with the method is that each side of the zone must be smooth; slope discontinuities may occur

only at the corners.
A method similar to the use of isoparametric coordinates, but more general, is the transfinite

mapping method discussed by Haber et al. (1981) and Gordon and Hall (1973). This method is so-
named because it generates meshes that will match the boundaries of the problem at a non-denum-
erable number of points. Perhaps its greatest advantage over the use of isoparametric coordinates

is that slope discontinuities may occur anywhere along any boundary. This method will be dis-

cussed in more detail in a following section.

FINITE ELEMENT FORMULATION

The program developed here is capable of handling two-dimensional Cartesian or radial (rz)

coordinates. The following theory applies to both cases. The equation to be solved in each phase

is the heat conduction equation

cA= v.(kVl) (I)

a:t -

with the phase interface boundary condition

dsL-==(Vf- AV..(2) -

Here T = temperature
t = time
s = location of the phase interface

C = volumetric (sensible) heat capacity
L = volumetric latent heat
k = thermal conductivity.

4



The subscripts f and u refer to the frozen and unfrozen zones, respectively. The method of solution
will use eq 2 to specify the new location of the front at each time step, and eq 1 to solve for the
temperature distribution in each phase.

Heat conduction equation on a moving mesh
The finite element formulation is obtained by applying the Galerkin method to eq 1. Multiply

each term by the weighting functions Oi and integrate:

< V -(ARo> -<C > = o. (3)

Using Green's theorem (or integrating the first term by parts) yields

<V- (k 7-N > -< _VT- . > + 4r k0_V T n dy (4)

where fr dy represents the integral over the boundary, n represents the unit vector normal to the
boundary, and <> represents integration over the area of the region. This result is substituted in-
to eq 3:

<k!T !Oi> + <C Wt- #> #r j Tfn d-j. (5)

Now let the temperature be approximated as follows: L
N

T-T:. Tj(t)o,(xy,t) for the Cartesian case
I

N
T - T = Z T(t)A(r,z,t) for the radial case. 

Here Oj stands for the basis, or interpolating, functions, which have been chosen to be the same as
the weighting functions. Linear triangular elements are used in this model.

Now the approximation for Tis substituted into eq 5. Note that the substitution into aT/at
will give two terms:*

<TkV7j •01> + <CO Tj > + <C di1-- > = frko T' n dy. (6)at dt

All of the terms in the above equation are familiar from finite element formulation on a fixed
mesh, except for the term containing 3/at. Lynch (1982a) shows that

ari = " V-VOj where V= dx1 @. (7)

Here a represents the coordinate of a node with respect to a fixed reference frame, and , inter-
polates between the nodes. V represents mesh velocity. For the case of linear triangular finite
elements considered here, , = i. Equation 6 becomes

<C~ij>t + <_.V¢'" i>T- <CiV 4_,>Tj= rklivT • nd'. (8)

Note that here and throughout the rest of the text, repeated indices denote summation unless otherwise
specified.

SI



This result has been presented in Lynch and O'Neill (1981), O'Neill and Lynch (1981) and Lynch
(1982a).

Note that this formulation has added a convection term to the governing differential equation.
This apparent convection is due to the movement of the mesh. Accounting for the mesh move-
ment in the governing equation in this manner assures that the temperature associated with each
node takes the movement of the node into account mathematically.

Equation 8 is now integrated over time. To cast eq 8 into its matrix formulation, the follow-

ing matrices are defined:

M = <Coioi> (9)

K <k=< V_ Y|> -<C0i - V 0> (10)

r =frk~i VT"- nd-1. 0I1)

The integral over time is

' MT +KT =r)dt where T=-(T). (12)

Because matrices M and K are mesh dependent and the mesh changes with time, the matrices
are time dependent. !his si tation represents a nonlinearity in the problem. For the purpose of
integration in time, both are regarded as constant over one time step but are updated each time
step. All of the elements of these matrices must pertain to a single mesh; the user is given the op-
tion of using the mesh at the beginning of the time step, the mesh after the phase front is moved,
or a mesh that is interpolated at any level between those two meshes. The integral over time is
evaluated by the use of finite differences, and yields

M(T n+l - T ) +K AteT +' + (I-Tnl = frdt

(M+ eAtK)T n + ' = [_M-( - e)AtK I T n +frdt. (13)

If eO, the equation is explicit; if e= 1, it is fully implicit. The resulting matrices are banded. In
the program, only the elements of the band are stored, and the equation is solved in entirety for
each time step using a banded matrix solver (Lynch 1982b). The matrices are not stationary.

Several points specific to the program presented here should be addressed now. First, in form.
ing terms like <C ij> and <k v Oj • V 0, > on a local level, it is assumed in the program that
C and k are constant over any given element. Then, on a local level for Cartesian coordinates,

<010j> = f $€i~ dxdy
xy

< q *i" Vi>=ff V " V0 ¢dxdy. (14)
Xy -_

In the (rz) cylindrical coordinates the elements represent rings about the z-axis. Here the coordi.
nate r is interpolated over an element by letting r = rk1k:

<Oioj> = 21r f f Oi € rdrdz = 2 ff'k f f OijiA drdz
rz rz

All of these integrals are evaluated exactly.

6



Also, V - V Oj may be written as V2 aj/axQ, where Q is a coordinate direction and is incremen-
ted to two (i.e. X I = x or r, and x2 = y or z). For linear triangular elements aOj/axe is constant
over an element. Then, for an element

p -J

<CO, Y lvo>C C VX_ f Oi4'm( (16)

where m is a node number and Vmj is calculated from node locations for the two meshes represent-
ing the region at the beginning and end of the time step.

Boundary conditions are handled as usual in finite element procedures. For constant tempera-
ture nodes the row representing that node in the global matrix is filled with zeros, except "I" is
put on the diagonal and the temperature is placed in the vector r. For nodes on zero flux bound-
aries, ri-O. The phase boundary is considered to be a Dirichlet boundary whose constant temper-
ature is equal to the phase change temperature.

Phase boundary movement
The nodes on the phase boundary dare moved each time step in accordance with eq 2. Since

the numerical solution involves a discretized boundary, the equation cannot be exactly satisfied
everywhere; Lynch (1 982a) proposes using a weaker, integral form of the equation:

f L ~ Oi" ndl = f kfVTf , n dy - fkuRTu •, n d-i

f kfvTf - nl-Oi dy -f kuyT u nEj dy (17)

where I j 1. The index j refers to nodes on the phase boundary; the unit vector n points away
from the frozen zone, and the integration is over the phase boundary. Again, subscripts u and f
represent unfrozen and frozen regions; repeated f and u subscripts do not indicate summation.
Now consider each boundary node j. Equation 17 may be written*

J i L -l It an 1j dfy. (18)

The term T/an is the heat flux normal to the phase boundary, and (AsIdt)l specifies the move- t
ment of node j. Let Yj be the magnitude of the vector (ds dt), and let mi, a unit vector, be its
direction. For a node on a phase boundary the situation is depicted in Figure 2.

AN oil

Figure 2. Movement of node i on a phase boundary.

Because Oj has a value of one at node i and zero at other nodes, and is linear,

fnojd-y = W tinI + %Q2n 2  (19)

where 2 denotes an element side length, and the subscripts I and 2 refer to adjacent element sides
on the phase boundary. Equation 18 will be used to solve for the magnitude of the velocity of the ..

node vj, but mi is not specified inherently in the problem. Here it is assumed that m is a weighted
average of the n, for nodes where the phase boundary is described by adjacent elements on both
sides; that is,

No summation convention is to be used for any subscript.

7



e e ,4+9.2 (20)"mn=_jj wherei--. = +.21 +92

Equation 18 becomes

1 %2 ii aT) (OT)
%V(Q M n +22Mj n2 af anaT) a T

+ aT9 [(k (k (21)

where, for example, (k a T/an)l, represents the heat flux across side I from the frozen zone. Solv-
ing for vj yields

e /aT\ /k aTJ + 2/~ aiJ /k a T).
, (,,k"i i1+ ,,

ViaLINf an /. .I an/r, n~ (22)L 21mj" nl + 
2 2mj- n2

Here, aT/an is evaluated a aT/an, from the numerical temperature distribution, and node I is
moved a distance sj-v-ijt, where At is the time step.

For a node on the end of the phase boundary there is only one adjacent element, and mi must
be specified by the user of the program. Usually its specification will be made obvious by the
other boundary conditions of the problem. For example, it may be a node on a line of symmetry,
so that rij will be directed along the line of symmetry.

The development of the specification of vj for a node on the end of the phase boundary is
analogous to the above discussion, except that all terms with subscript I are omitted if the node
is on the left side of the boundary and terms with subscript 2 are omitted if it is on the right side.

In conduction problems the steepest temperature gradients are usually present at the beginning
of the solution and tend to lessen in time. Since the movement of the phase front is proportional
to temperature gradients, using the gradients at the beginning of the time step to project the front
will usually result in its being projected too far. The situation may be improved by iterating on the
location of the front for each time step. In the model presented here, one iteration is an option.
That is, the user is given the choice of no iterations or iterating once. The iteration involves using
the average of the temperature gradients at the beginning and end of the time step to reposition
the front, rather than merely using the gradients at the beginning of the time step.

TRANSFINITE MAPPINGS

Since the phase boundary may travel large distances and undergo a significant change in shape
in the course of the solution, the interior nodes of the mesh must also move in order to keep the
mesh in a reasonable geometrical form. The method used in this work to accomplish this task in-
volves the generation of a new mesh each time step, using transfinite mappings. In this section the
use of transfinite mappings is investigated.

Haber et al. (1981) and Gordon and Hall (1973) describe the transfinite mapping in terms of
projectors. First consider the "lofting" projector. For this projector the boundary curves 0 (u)
and IO(u) are specified (Fig. 3), and the projector performs a linear interpolation in one direction
between the curves. The lofting projector is defined by the equation

P(u,v) = (l-v)0 1(u) + v0(u) (23)

where u and v are normalized coordinates: 0(wl, 04<l.
To interpolate in two directions, two lofting projectors may be combined to form a "bilinear"

projector. As shown above, each lofting projector forms straight edges in one direction, thus

8
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0 10 20 30
ix (cm) Figure 3. Use of the lofting projector. P

introducing some mismatch or distortion of the true region. A Boolean combination of the loft-
ing projectors produces the bilinear projector, which removes distortion. The bilinear projector
represents a continuous mapping of the unit square in the transformed space onto the region to
be meshed in F-space, where the region has four sides described by the curves ip I(u, 0 2(u), , (v)
and t 2 (v), and four comers with coordinates F(u,v), where u and v equal zero or one. The bilinear -
projector is defined as follows:

PB(u,v) = (1-v0 1(u) + V'42(U) + (l-u)M (v) + Ut2(V) - (1-u(l-v)F(0,0)

- (I -u)vF(O, 1) - uvF(l, 1) - u( -v) i,0) (24)

where OQKl, 0XvKl. An example of the use of this projector is shown in Figure 4.
In practice a finite number of nodes is identified on each side; these represent discrete values

of 0 and t. Thus, 4, and t need not be smooth functions or any known functions at all. It
matters only that nodal coordinates are known at various places along the boundaries.

Gordon and Hall (1973) and Haber et al. (1981) show illustrations of meshes where excellent
results are obtained by this method. Boundaries are accurately described by the mapping, the
interior mesh reflects boundary shapes, and elements formed have good aspect ratios. Also, it is
reported both in the isoparametric method (Zienkiewicz and Phillips 1971 ) and in the transfinite
mapping method (Gordon and Hall 1973, Haber et al. 1981) that the use of highly distorted

boundary curves may result in the genera-
8O_ tion of nodes that do not lie inside the

region ("overspill"). (The recommended -

path to avoid that problem in two dimen-
sions is to divide the region into one or

60 4' (U) more simpler regions over which meshes
60 are generated separately.) In general, how-

ever, the method of transfinite mappings
has been highly successful in creating

y \acceptable meshes.
(Cm) There are a number of subtleties and

40 2 limitations of the method that are not dis-
S(V) cussed in the literature. The most straight-

forward use of transfinite mappings for
mesh generation is obtained if interior nodeL

20 locations aie assumed to lie at points that
correspond to the intersection of lines of
constant u and v in the transformed space
of the unit square. This requires that oppo-

|')'u) site sides have the same number of nodes.

0 20 40 60
X (cm) Figure 4. Use of the bilinear projector.

9

L.



Often, more numerical detail will be desired in one section of the mesh than in others, so that the
nodes in F4pace are generally unequally spaced along the edges of the region. For eq 24 to be
used, each boundary node location must be identified with values of u and v in the space of the
unit square. Two ways of doing this were investigated: 1) to assign u to be a normalized distance
along the edge in F-space and 2) to assign u, for example, as u = i/N, where the ith node along the
edge is being considered and there are N elements along the edge.

Consider the specification of u and v by the first method, with the additional assumption that
the normalization results in a set of nodes with u or v values that are the same on opposite sides.
This results in a mapping where the unit square has been "stretched" relatively smoothly in the
mapping. In this case, interior mesh lines will reflect boundary shapes (Fig. 5).

20-

Y

10 20 30 Figure 5. Use of the bilinear projector
X (Cm) with method). 1

In general, however, arbitrary subdivision of the boundaries with method 1 will result in nor-
malizations such that nodes on one side have u or v values that differ from the values along the
opposite side. In this case, grid lines in F-space would not be identified with lines of constant u
and v in the transformed space. Equation 24 could be used in a way that would accommodate
this situation. However, while not conceptually difficult, this procedure would involve calculat-
ing u and v for each interior node, and would require tP and t values to be specified for any choice
of u and v. This would make the mapping less attractive computationally.

Now consider the specification of u and v by the second method; that is, let u = i/N. In this
case, nodal values of u or v on one side will always be the same as on the opposite side, regardless
of node spacing. In general this method results in a more uneven "stretching" of the unit square.
The interior mesh will not necessarily reflect boundary shapes. As an illustration, compare Figure
6, which was generated by this method, to Figure 5. Both meshes have the same boundary nodes. -

20

Y
(cm) 10 -

104

S0 20 Figure 6. Use of the bilinear projector
x (cm) with method 2.

This use of the mapping allows more flexibility for the analyst to specify boundary node concen-
trations. The mesh in Figure 7 was generated in this manner; note that boundary nodes are un-
evenly spaced on opposite sides. If u and v were to be assigned by normalized distances, the
mapping would require the additional calculations mentioned above.

10
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20

(cm)
Io

Figure 7. Use of the bilinear projector

0 10 20 30 with method 2, using uneven divisions
X (cm) along the sides.

The use of the "trilinear" projector to generate a mesh in a three-sided region is presented by
Haber et al. (1981). It is defined as follows:

PT(u,v) u [(j)v) + UO (-v) +(%!)1()+ t( w

+/ ()+ (: (1 -u) - WOO() - UP() - v17(0)J (25)

where t, 0 and il represent the curves describing the three sides; <u< 1, Ov< 1, O<w< 1;
and u+v+w = 1. Each of u, v and w increase in a counterclockwise direction along one side.

For this mapping the same two methods of specifying u, v and w on a side will now be investi-
gated such that grid lines and lines of constant u, v and w will coincide. It was found that attempt-
ing to take u, v oir w as normalized distances along the sides is possible only for the special case
where each side is divided into equally spaced segments. Specifying the nodes so that any or an
sides are divided into unequally spaced segments will violate the criterion that u+v+w = 1.

However, specifying u, v and w boundary values as u = i/N, etc., will always satisfy the criteri-
on that u+v+w = 1, where this means of specification of u, v and w is used on each of the respec-
tive sides. As in the case of the four-sided region this will result in an uneven "stretching" of the
triangular region in the transformed space, so that in general the interior mesh may not reflect
boundary shapes. Figure 8 depicts a mesh generated in this manner, where the spacing is not the

20-

Y
.c m)

10-

0 0 20 , 0 Figure 8. Use of the ilinear projector,10 20 30

X (cm) using uneven divisions along the sides.

same on the three sides, but an attempt was made to concentrate the nodes at one corner. By
using method 2 but choosing node spacing on one side to be proportional to the spacing on an-
other, one may obtain a mesh such as in Figure 9. Nodes are somewhat concentrated at one cor-
ner, but now the interior mesh reflects boundary shapes. Now, by trying to concentrate edge
nodes severely at one comer but still maintaining side spacings that are proportional to one an-
other, we see that overspill may occur (Fig. 10). Thus, in the use of transfinite mappings, over-
spill may occur not only as a result of fairly uniform edge node spacings on a highly distorted re-
gion, but also for highly concentrated edge node spacings on a regular region.

11
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Y(cm)
10-

Figure 9. Use of the trilinear projector,
0 10 20 30 using uneven but proportional side divi-

X (cm) sions.

20

(cm)

IL Figure 10. Use of the trilinear projector 0 o 20 30o

and the occurrence of overspill. x (cm)

The trilinear projector results in three-sided elements; the bilinear projector results in four-
sided elements. Throughout this work the elements are linear trinagles, so that whenever the bi- ...
linear projector was used, a diagonal was constructed through each four-sided element to produce -

two triangles.
One additional concept worth mentioning in the use of transfinite mappings is that of a "side."

Because slope discontinuities may occur anywhere along a side, the word "side" can lose its tradi-
tional meaning. For example, Figures 11 and 12 illustrate the use of the bilinear projector to
mesh a triangle, and the use of the trilinear projector to create a mesh in a square. Here, the tri-
angle is a four-sided region, and the square is a three-sided region.

30-

20

Y
(cm)

0

I I I I

0 10 20 30
X (cm) Figure 11. A four-sided region.
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20 S
Y

(cm)

to -

0 10 20 30

X (Cm) Figure 12. A three-sided region.

FEMOVE

The computer program developed by the author is named Femove. It models two-dimension-
al phase change in conduction heat transfer by using the moving-mesh finite element technique
in conjunction with transfnite mappings as described above. The program interactively allows
the selection of the following options:

1) The coordinate system may be either Cartesian or (r, z) cylindrical coordinates.
2) If desired one iteration may be performed in calculating the location of the phase front at

each time step.
3) One or two phases may be modeled.
4) If desired the heat conduction equation may be solved over each phase for several time

steps before the front is allowed to move. This is useful if crude temperature distributions are
input initially but the user desires a smoother start-up condition for the temperature distribution.

Femove was written in Fortran and is composed of a main program and an assortment of sub-

routines. A flow chart is shown in Figure 13 for the major processes in the main program and "
the calls to the subroutines.

Subroutine Ratio
As the phase front moves, the mesh will deform, and the sizes of the frozen and unfrozen

zones may expand or contract. Often it is desirable to slide the nodes along the edge of a zone
so that they keep their same relative spacing along an edge. For each node on the side of the in.
tial mesh, Ratio determines the distance from the first comer of the side to this node, relative to
the length from the first corner along the side to the last corner. Thus, Ratio produces ratios.
The edges of the zones may be of an arbitrary overall shape, as long as they are piecewise linear.

Subroutine Move
Move uses the temperature gradients along the phase change front to move the nodes on the

front to their location for the new time step.

Subroutine Newmsh
This subroutine administrates the formation of the new mesh in each zone. Information on

the location of the edges in each zone must be stored; Newmsh coordinates this information and
calls other subroutines to form the new mesh.
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IRead in Initial information

Write information in readable form in file CONOUT

Time step loop

Save coords. and temps. from last time step
t.

Iteration loop

Loop over zones

ce N MSH CCRVRAT Call WHICH

j a iC al L IN RI

Call TRTRI

Calculate node velocities

Loop over elements

SCall MASCARo ARDU
Call STIFCARoSFA I 

-,

SPut local Felement info into global matrices]

Sinsert boundary conditiona l

Write output if appropriate at this time

E nd

Figure 13. Flow chart for Femove.

Subroutine Crmat
Crvrat uses the information originally gained in Ratio to slide the nodes tangentially along the

new locations of the edges of a zone to position them so that they maintain the same relative posi-
tions along the side as they did in the original mesh.

Subroutine Which
Given information on what side of the zone is being examined, Which finds the first and last

corners of the side.

Subroutine Unr
If Crvrat is not called, other options are available for specifying node locations along the side

of a zone. Linr enables the nodes to be spaced in several ways along a straight line joining the
corners. These spacings include: 1) even increments, 2) increment spacing proportional to the
square root of the length of the side, or 3) increments spaced in a linearly increasing or decreas-
ing fashion (the second segment is twice the length of the first, the third segment is three times
the length of the first, etc.).

14



Subroutine Trfinm
This subroutine performs a transfinite mapping for a four-sided zone to generate the new in-

terior node locations in the mesh, given the locations of the nodes on the side of the zone.

Subroutine Trtri
Trtri performs a transfinite mapping for a three-sided zone to generate new interior node loca-

tions, given the locations of the nodes on the side of a zone.

Subroutine Area
This subroutine calculates the area of a triangular finite element.

Subroutines lescar and Masrad
For Cartesian coordinates, Mascar forms the local 3x3 matrix, which is denoted by M in eq 9.

Masrad forms the M matrix using radial coordinates.

Subroutines Stfar and Stfrad
The matrix labeled K in eq 10 is formed locally in Cartesian coordinates by Stfcar and in radial

coordinates by Stfrad. =  t

Subroutine Solve
This subroutine solves the system of eq 13, which has been stored in banded form (Lynch

1982b).

L
COMPARISON WITH ANALYTICAL RESULTS

The results of program Femove will be compared to four analytical solutions for heat conduc-
tion with phase change: 1) the Neumann solution, 2) outward radial freezing from a cylinder,
3) one-phase freezing in a corner, and 4) two-phase freezing in a comer.

Femove is constructed so that each phase, frozen and unfrozen, is represented by a separate
zone in the transfinite mapping. That is, the mesh for each phase is constructed independently,
with the restriction that the meshes match to share the nodes along the phase boundary. There
are problems in which it will be necessary to model only one of the phases. For example, later in
this report the freezing of a pipe containing a flowing liquid will be modeled; the program uses
one zone to model the ice formation. The program will also be used to model an experiment in-
volving freezing of saturated sand around a pipe; for this case it is necessary to model both the - -
frozen and unfrozen phases, and two zones are used to accomplish the result. The first three com-
parisons with analytical solutions model one phase; the fourth models two phases.

The Neumann solution
This solution may be found in Carslaw and Jaeger (1959, p. 286) and is one-dimensional in

Cartesian coordinates. It is assumed that the region is initially at its melting point; at time zero a - -
step change in temperature is imposed on the surface so that the material begins to freeze. The
case considered is the freezing of water. For this problem Carslaw and Jaeger give the result

Y = 2kv'- (26)

where A must be obtained from the expression

Aexp(Xs ) erf(X) = C(Tf - T)(27)

where Y - location of the phase front
t - time
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a = thermal diffusivity of ice = 0.00134 cm2/s
L = volumetric latent heat of fusion = 80 cal/cm 3

Tf = phase change temperature = 0°C
T = surface temperature = -6*C.

Any density difference between unfrozen and frozen materials is neglected.
The model was assigned an initial frozen layer of 0.188 cm. Forty time steps were taken to

model 7200 s (2 hr). Time steps of unequal sizes were taken, so that the steps were linear in the
square root of time. (This was done because freezing generally progresses as the square root of
time for a constant imposed boundary temperature.) Figure 14 shows the calculated location of
the phase front versus the analytical location through time. The results compare well. Figure 15
shows the initial mesh and meshes at intermediate and final times. Nodes in the -60 C surface are

2-

(cm)Y

0 2000 4000 6000 8000
Time(s)

Figure 14. Phase front location comparison with the one-
phase Neumann solution. The solid line is the analytical
solution; the circles represent the calculated solution.

1.5 a. 0s b. 2672 c. 7280

Y 1.0
(cm)

0.5-

0 0.2 0.4 0.6 0 0.2 0.4 0.6 0 0.2 0.4 0.6

X (cm)

Figure 15. Initial, intermediate and final meshes for the Neumann
comparison.

not moved during the run; nodes on the phase interface are moved in accordance with eq 2, and
nodes along the zero flux sides are slid tangentially along the sides to maintain an equal spacing
between the comers.

This problem was also run using the apparent heat capacity method on a fixed mesh with fi-
nite differences (where the alternating-direction implicit procedure was used to solve the result- 
ing set of equations). Seventy-five nodes were used, compared to 21 nodes and 24 elements used
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here. Eight hundred time steps of equal size were taken to model two hours of time, and the
simulation required 240 cpu seconds on the Prime computer at CRREL. The Neumann simula-
tion using the moving mesh program Femove required 16 cpu seconds. The amount of cpu time
required per time step is approximately the same in both cases even though the finite difference
simulation used many more nodes. However, because the number of time steps required by the
apparent heat capacity method on a fixed mesh is greater, the solution was more costly. Both the
finite difference program used (Albert 1983) and the finite element program presented here were
developed to model two-dimensional situations. Although there are differences in programming
style and in the capability of the programs, so that a strict comparison may not be made, the simu-
lations run for this report generally required much less computer time than similar simulations run
using the apparent heat capacity method.

Radial freezing
This solution is one-dimensional in radial (r, z) coordinates. The region outside a cylinder of

radius a is assumed to be water initially at its melting point, and the temperature profile is assumed
to be steady state, given the location of the phase front at any point in time. This is a reasonable
assumption for the high value of latent heat considered here, where the Stefan number is 0.075.
At time zero a step change in temperature is imposed on the surface of the cylinder, causing the
water to freeze. For this case Carslaw and Jaeger (1959, p. 296) give the analytical result

2R2In ) _ R2 + a2 = 4a(Tf - T,) t/L (28)

where R = location of the phase front
t = time
a = radius of cylinder = 0.1 cm
a = thermal diffusivity of ice = 0.00134 cm2 /s
L = volumetric latent heat of fusion = 80 cal/cm3

Tf = phase change temperature = 00 C
Ts = surface temperature = -6'C.

The model was assigned an initial ice layer of 0.1708 cm; this layer corresponds to an initial
time of 30 s. Twenty time steps (again, as the square root of time) were taken to model 7200 s
(2 hr). The calculated and analytical locations of the phase front are plotted in Figure 16. The
results compare well. Initial, intermediate and final meshes are shown in Figure 17.

12-

0.8o

R
(cm)

0,4-

Figure 16. Phase front location comparison
with the quasi-steady radial solution. The

0 2000 4000 6000 8000 solid line is the analytical solution; the circles

Time s) represent the calculated solution.
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Figure 17. Initial, intermediate and final meshes for the radial comparison.

One-phase corner
A two-dimensional, Cartesian analytical solution to a problem involving freezing is provided by

Budhia and Kreith (1973). They arrive at the solutions for both one- and two-phase freezing in a
wedge by superposing the results of two auxiliary problems: heat conduction without phase
change (with the same initial and boundary conditions as the actual problem), and heat conduc-
tion with phase change (with initial and boundary temperatures equal to zero, and the effect of
the latent heat at the interface represented as a moving surface source).

In the one-phase corner solution it is assumed that the unfrozen region is composed of a mate-
rial of uniform temperature equal to the temperature of phase change (0°C), making it necessary
to model only the frozen region. The region is modeled by a single four-sided zone; the initial
mesh is shown in Figure 18. An initial uniform ice layer 0.5 cm thick was assumed, and the
accompanying initial time is 180 s. The temperature of the sides of the comer was maintained
constant at -6.0°C. Because of the symmetry of the problem, only half of the comer needs to
be modeled; the 450 line of symmetry at the vertex of the corner is assigned the zero-flux bound-
ary condition. The value for the latent heat was 9.3678 cal/cm 3 . This is much lower than the
value of latent heat for water used in earlier comparisons, so that in this problem the movement
of the phase front is much faster than for the earlier comparisons made, and the temperature pro-
file is much less like steady state. This, then, is a true test of the method.

1.2~

0.8

Y
(cm)

0.4 --

00.4 0.8 1L

X (cm)

Figure 18. Initial mesh for the one-phase corner problem.

In the analytical solution the sides of the corner extend to infinity. This is modeled by a zero-
heat-flux condition at that boundary, and the boundary is moved away from the vertex of the
comer at a rate that keeps x 2 /t constant (x is the location of the boundary and t is time). The
initial location of this boundary was x-1.39 cm; for this location the analytical solution assumes
a one-dimensional behavior, so that the assumption of a zero-flux vertical boundary there is valid. -

Note that a "naive" start was assumed. That is, the initial phase-front profile is a straight line.
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The movement of the phase front is in accordance with eq 2; in addition, to prevent the nodes
from crossing as the ice fills in the vertex of the corner, the phase boundary nodes are slid tangen-
tially along the phase front, keeping the same relative distance along the front as in the original
mesh. Femove was run for 40 time steps (spaced as the square root of time), which model
7440 s (: 2 hr)adjusted time = 7620 s). The run required 67 cpu seconds on the Prime comput.
er at CRREL. The final mesh is shown in Figure 19. For scale comparison, Figure 20 illustrates
the initial mesh plotted on the same scale as the final mesh.

12
7820 s

8
Y

(cm)

4-S

0 4 8 1'2 Figure 19. Final mesh for the one-
X (cm) phase corner problem. 0

12 O.Os

8
Y

(cm)

4-

0 4 8 12 Figure 20. Initial mesh plotted on the
X (cm) same scale as the final mesh.

The results are compared with those of Budhia and Kreith (1973) in Figure 21, where

r* = r/NA/' (29) -

r = distance from the vertex of the corner
t = time
a = thermal diffusivity in the frozen zone = 0.00134 cm2 /s.

The results compare very well. i
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0 0. 1. L5 2. Fgure 21. Comparison of the one-phase

r* comer results wvith the analytical solution. .

Two-phase comer
Budhia and Kreith also present analytical results for the case where the region is initially at a-

uniform temperature above the freezing temperature. Now both frozen and unfrozen zones must
be modeled. When two phases are modeled, it is advantageous to iterate once on the location of
the phase front for each time step, as described earlier.

The comer has sides held constant at -6.0C, the initial uniform temperature of the unfrozen
material is 1.8C, the thermal diffusivity is 1.34x 10-3 cm 2/s, and the latent heat of fusion is
again 9.3678 cal/CM3 . As before, the frozen zone is four-sided and has an initial uniform thick.--

ILness of 0.5 cm. The unfrozen region is modeled by a three-sided zone, as illustrated in Figure 22.
The 450 line of symmetry is assignied the zero-flux condition in both phases, as is the vertical bound-
ary farthest from the vertex of the corner. In the unfrozen region the node at the top vertex of the
triangle, farthest from the phase front, is assigned a constant 1.8°C temperature. This corner was -
initially placed at a distance of seven frozen thicknesses above the phase front. Since a vertical zero-
flux boundary is maintained below that node, the initial placement of the comer node requires that---
the vertical zero-flux boundary of the frozen zone has an x-coordinate much greater than is required ...
for satisfaction in assuming the zero-flux condition there. As the simulation progresses, the corner
at the top vertex of the triangle is moved to maintain its location seven frozen thicknesses above:
the phase front, and the vertical boundary is moved in accordance with this node. The parameter
for implicitness in time e was set equal to 1.0, and the mesh used each time step was centered in
time.
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4 0- The situation was modeled for 40 time
steps, again taken as the square root of time,
totaling two hours (the simulation required
232 cpu seconds on the Prime computer at

32 CRREL). An intermediate mesh is shown
in Figure 23, and the final mesh is shown in .

(cm) Figure 24. Note that they are plotted on
different scales; in Figure 25 the initial mesh
is plotted on the same scale as the final mesh.
The solution is compared to that of Budhia
and Kreith in Figure 26. Very good agree-
ment is found. 9

During the course of modeling this prob-
lem an interesting and disturbing phenome-

0 " non was observed. In setting up the originalX (cm) mesh for the three-sided zone the 1.80C
constant-temperature comer represents an

Figure 24. Final mesh for the two-phase corner infinite boundary approximation, and very
comparison, small temperature gradients are expected in

that region, so an attempt was made to make
the elements large in that section of the mesh. An example of this type of mesh is shown in Figure
27. However, when the problem is modeled on that mesh, the temperature in the unfrozen zone
grows out of range; temperatures between OC and 1.80C are expected, but temperatures as high
as 30 C develop. This occurs even when the time step is reduced by a factor of four. '

48
0.Os

2.0 -- Calculated
"_Analytical

32 1.5 --. F

(Cm) 
r - .

1.0
16o -4-- \ \

0.5

S t ,I I J

0 16 32 48 0 0.5 1.0 1.5 2.0
X (CM) r*

Figure 25. Initial mesh plotted on the same scale Figure 26. Comparison of the two-phase
as the final mesh. corner results with the analytical solution.

To illustrate the distortion effect, the temperatures for the y-coordinate of the nodes along the
vertical zero-flux boundary in the unfrozen zone are plotted for several cases in Figure 28. The p -

solid circles represent the case where the mesh in Figure 22 is used; the node representing the semi-
infinite corner was assigned a constant I.8°C temperature, and the satisfactory results previously
discussed were obtained. For the same mesh the node representing the semi-infiite corner was
assigned a zero-flux condition; these results are plotted using an open circle. The results for this
mesh differ very little, indicating that the boundary condition at the corner is not at fault for this
distortion. When the mesh illustrated in Figure 27 is used, distortion develops. The geometry of .
the mesh in the unfrozen zone is the only thing that was changed. (The evaluation of the mesh
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was carefully monitored during the simulation to ensure that no tangling of the mesh occurred.)
The solid triangles in Figure 28 represent the case where the node at the semi-infinite corner was
assigned a constant 1.80C temperature, and the open triangles represent the case where the comer
was assigned a zero-flux condition. Although the different boundary condition changes the nature
of the distortion, the distortion is not eliminated. Note that the temperatures along the vertical
boundary were plotted for convenience of illustration, but that the distortion occurred through- p
out the interior of the unfrozen zone.

Extensive investigations were done to find the source of this problem, including using different
mesh configurations with better aspect ratios but all with a large element at the semi-infinite corner
of the unfrozen region. If the node at the semi-infiute comer and the vertical boundary are not
moved, the solution proceeds as expected. However, by maintaining a large element at the corner
and moving it fairly rapidly, distortion does develop. It was finally concluded that the numerical
distortion is due to effects of a large Peclet number. The Peclet number is Ryl/o, where 2 is a charac-
teristic length (the element length here), v is the velocity of the convection (the mesh velocity), and
a is the thermal diffusivity. Numerical difficulties due to large Peclet numbers are known to occur
when modeling convection on a fixed mesh. However, the distortions encountered there are oscil-
latory and may develop when the Peclet number gets larger than one. In both two.phase comer - -

problems presented above, the maximum Peclet numbers ranged between 30 and 80. The effect
of the Peclet number in this problem is discussed further later. It was discovered in this work that
the combination of large elements and a rapidly moving mesh can lead to unacceptable distortions
in the numerical solution.

APPLICATION -

Comparison with experimental results
The finite element program was used to model laboratory data that were obtained at CRREL

by O'Neill (in press). The experimental apparatus consisted of a 55-gal.drum rfiled with saturated,
graded Ottawa sand, with an off-center, 2-in. copper pipe passing vertically through the drum.
Copper tubing was wound around the outside of the drum, and glycol solution at approximately
5°C was pumped through the tubing in an attempt to maintain the outside of the drum at constant
temperature. Cold ethylene glycol was pumped through the internal copper pipe, keeping the sur-
face of the pipe between 4' and -9°C. The subsequent freezing of the sand was monitored via a
system of thermocouple strings placed in the sand.

The latent heat of fusion used in the model was 23.5 cal/cm 3 , and the other thermal properties
were as follows:

Unfrozen Frozen

c = 5.6x cal/cm s0C k = 9xlO- 3 cal/cm s°C

C = 0.589 cal/cm 3 OC C = 0.398 cal/cm 3 
IC.

The experiment and determination of material parameters are outlined in O'Neill (in press). Two
runs of the experiment were performed; these will be labeled case 1 and 2.

The original finite element mesh (Fig. 29) consists of two (frozen and unfrozen) four-sided _ -
zones, each zone 5 elements by 7 elements. Because of the symmetry of the drum, only half of
the drum needed to be modeled; the boundary condition along the horizontal line of symmetry
was assigned zero flux. The nodes representing the surface of the drum and the surface of the pipe
were placed at equal intervals along the corresponding semicircles and were not moved during the
simulation. The nodes representing the freezing front were initially equally spaced along a semi-
circle whose radius was 0.6 cm greater than the pipe. (The location of the phase front was interpo-
lated to be at this location 900 seconds after the start of the run.) The movement of these nodes
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was specified by the boundary condition at the interface and were maintained at equal intervals
along the interface by subroutine Crvrat.

The temperature of the pipe was monitored by four thermocouples placed on the pipe circum-
ference; the temperature they reported varied by as much as 0.70 C at any given time. For simpli-
city the model assumed a uniform pipe temperature, which was the average of the thermocouple
temperatures. This pipe temperature varied with time.

The outside drum rim tempe. ture was monitored by seven thermocouples; this temperature also
varied with space and time. The thermocouples on the rim nearest the pipe exhibited a lower tem-
perature than the rest of the rim throughout the experiment. To model this, the low temperatures
were averaged for a given time, and the average temperature was used for the two rim nodes nearest
the pipe. The third rim node was assigned a temperature that was an average of the low and high
rim temperatures. The rest of the nodes were assigned the high rim temperature, which was the
average of the temperatures in that region. All rim temperatures varied with time. The tempera. .. ,
tures used to model the pipe, warm rim, and cool rim are plotted against time for case I in Fiure 30.
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The initial temperatures in the sand ranged from 4.9 to 5.3°C, but the model assumed an initial
uniform temperature in the unfrozen zone of 5.2°C.

Case I was run for 20 hours (72,000 s). This was modeled by Femove using 20 time steps, which
were spaced linearly as the square root of time. The resulting temperature distributions along the
line of symmetry for a horizontal cross section of the drum are compared in Figure 31 for times of
5 hours (18,000 s) and 20 hours (72,000 s). Both temperature distributions agree very well. The 0
"kink" in the temperature solution at O°C is a result of the latent heat condition at the phase bound-
ary, where there is a jump in the temperature gradient between the frozen and unfrozen zones. Fig-
ure 32 displays the mesh at 5 hours and at the end of the run (20 hours).

The locations of the phase front along the line of symmetry are plotted in Figure 33. The very
simplified initial conditions assigned to the model account for the difference between computed
and actual values for very early times. The effect disappears, however, and the model predicted the
location of the phase front very well at intermediate and later times.

Femove was also used to model case 2, which had the same initial conditions but slightly differ-
ent boundary conditions at later times. Case 2 was run and modeled for 22.2 hours. The results
are very similar to the results of case 1. The temperature distributions are compared in Figure 34
for times of 5.2 hours (18,720 s), and 22.2 hours (79,920 s). Again the results compare very well.

These data have been used in a numerical simulation by O'Neill (in press), where the boundary
integral equation method was used to model the phase change. The results obtained here are supe-
rior to results obtained by O'Neill. This indicates that the technique used here is much better able
to model phase change when the temperature distribution is not quasi-steady, that is, when the
latent heat does not have a high value rela-
tive to the sensible heat capacity and tem- . _.
perature difference. 60 C. 5 h.

10-

5, 40.

-5- 2010

-10 I0. 5 hrs.

I 0( ec ) 6 0

-E b. 20 hrs.
-

0o 40

1 0
-5-I

b.O 20 hrs.Go

X (er)

0 20 40 60

Figure 31. Temperature comparison along X (Cm)
horizontal axis of symmetry for case 1. The
dots represent data from the experiment. The Figure 32. The mesh for the experiment corn-
solid line represents the numerical solution. parison (case 1). The phase front is highlight- 9
The dashed lines represent the pipe. ed for clarity.
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Freezing of fluid flowing in a pipe
A significant class of problems involving freezing concerns the case where there is flow in the

unfrozen region. Numerical models have been developed that involve the use of a mesh that is
fixed throughout the simulation (for example, Gartling 1978). A problem with the fixed mesh
approach is that the phase boundary rarely coincides with the element boundaries, so that a partic-
ular element is often supposed to be composed partly of frozen material and partly of flowing fluid.
To deal with this problem, some sort of smearing technique is usually used, in which the location of
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the-phase front itself is not precisely defined; instead the phase change occurs over a "transition"
region, where the fluid is assigned a very high viscosity. These techniques are not prepared to
handle a situation where, for example, a boundary condition involving convective heat transfer is
associated with the phase boundary. The use of a mesh that is able to move in time overcomes
these difficulties. The phase boundary always coincides with element boundaries, making it possi-
ble to clearly specify both the thermal and the fluid boundary conditions there.

As an illustration of this technique, consider the case of two-dimensional freezing of fluid flow-
ing through a pipe, where the inlet temperature of the water is above freezing and the pipe walls
are maintained at a constant temperature below freezing. Of particular interest is the case where
the flow is driven by a head drop across the length of pipe, which is more realistic than the constant-
flow assumption used in previous investigations.

For some laminar and turbulent pipe flows Gilpin (1979) and others have observed that the ice/
fluid interface assumes a wavelike structure down the length of pipe. By extended extrapolation
of Gilpin's work Epstein and Cheung (1982) attempted to identify cases where the ice/fluid inter-
face assumes a wavelike structure and where it assumes a smooth structure. In this report, it will
be demonstrated that Femove may be used to model freezing in a pipe when the ice/fluid inter-
face is smooth.

The flow is assumed to be fully developed and turbulent. As the water flows through the cold
pipe, its temperature will drop, resulting in the formation of an ice layer that thickens along the
length; this, in turn, will tend to slow the flow. In some instances the pipe may freeze shut. Fe-
move will be used to model the frozen region adjacent to the pipe wall; the addition of a convec-
tive heat transfer coefficient of the ice/water interface will provide the thermal input from the
flowing water. Expressions for the friction factor for the flow and the heat transfer coefficient
will be needed to model this phenomenon.

An analytical solution for the problem of turbulent heat transfer in a pipe with uniform flux
and cross section was obtained by Petukhov and Popov (1963), who demonstrated that the result
agreed well with experimental results. Their formula is

u= (f/8) RePr (30)
2.07+ 12.7 vJT (p 2 / 5-1)

where Nu = hD/k
h = heat transfer coefficient
D =pipe diameter
k = thermal conductivity
Re = Reynolds number 3
Pr = Prandtl number

and the friction factor f is to be determined from the Filonenko equation:

f = [1.82 log, o(Re)- 1.64]- 2 . (31)

Karlekar and Desmond (1977) may be consulted for more information on this topic.
Strictly speaking, as the freezing progresses, the flow may be slowed enough to become laminar,

requiring the use of different expressions for the friction factor and heat transfer coefficient. How-
ever, that case was not considered here.

Procedure
A schematic diagram of the pipe and the ice is shown in Figure 35. Because the temperature

and Reynolds number may vary over the total length of pipe, the flow is described incrementally,
with each increment corresponding to the length of a finite element in the surface of the ice.

In the fluid region each increment is treated as though it were a uniform length of pipe. At
each time step, given the initial ice configuration, the fluid velocity may be determined iterative-
ly as follows. First, a guess of an inlet velocity for the pipe v is made. Then the outlet velocity
for the first increment, and hence the inlet and outlet velocities for each successive increment,
may be determined by conservation of mass in the fluid region:
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Figure 35. Schematic diagram of pipe with ice interface.

Vi (Ail Vi1

where A 1 and A, are the cross-sectional areas of the flow at the inlet and outlet section of incre-
ment i, respectively. Once all of the vi have been determined, the average velocity for each incre-
ment is given as:

Ti =  (Vi I + V12)."

The head drop over each increment is calculated from

Hi =fi -i - (32)

where H = head drop over an increment
fi = friction factor for the increment
Azi = length of the increment

= average radius= 1(r, +r 2 )

g = acceleration due to gravity.

The friction factor for each increment is calculated from eq 31, using the Reynolds number de-
fined as

ii
Re =

V

where v is the kinematic fluid viscosity. The head drops of all increments must sum to the head
drop over the total length of pipe, which is constant and specified at the beginning of the simulation:

N_=I H i .

If the incremental head drops do not sum to the desired total, a new inlet velocity is tried, and
the process is repeated until the head drop criterion is satisfied. Once the fluid velocity in each
increment has been determined, the heat transfer coefficient for each increment may be calculat-

ed from eq 30.
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Next, the heat transfer coefficients are used to determine the temperature of the flowing fluid
in each increment. Consider the increment of fluid illustrated in Figure 36. Let Ti, and T 2 be
the water temperature at the inlet and outlet of the increment, respectively. Then the heat flows
qj for the increment are given as:

qi, = m-r? Pvi, CpTi,

qi = mrrr'  Cp T (33)i2 12 i2 P i

qw = hii(Ti, -- T,)

where p = density of the flowing fluid
CP = specific heat of the flowing fluid
hi = heat transfer coefficient
Si = surface area of the frustrum formed by the ice boundary around the flowing

fluid = ir(tit+ri2).(r1-r12)
2 +(Az )

Ti. = bulk water temperature for the increment = (TI + T1 2 )/2
T. = temperature of the ice = 0C.

Energy is conserved:

qi, -qi2 -qiw =0. (34) PP-O

Equations 33 may be substituted into eq 34 and solved for T

Ti2 = irpCpri, ii 1- tiSi(Ti, -2T,) (35)
7rpC, r2 P. + h.S.

1'2 12 S

The inlet water temperature for the first increment is known, and the outlet (and thus inlet) water
temperatures for each increment may be calculated from eq 35.

r-0 -___Zero Flux

I I -

rig

r,z
q," Figure 36. Heat flow into and out of an

increment of fluid.

So far for this time step the heat transfer coefficient and bulk water temperature for each incre-
ment along the pipe have been determined. Now the program determines the new location of the
ice/water interface and calculates the temperature distribution in the ice. For this problem the
boundary condition described in eq 2 becomes

L ds_ = (kV)f - (36)

where, for each increment along the interface, q = hiSi(Tiw- Ts).

29



Results
The program was used to simulate freezing in two lengths of pipe. For both lengths the pipe

radius was 0.6 cm and the pipe temperature was -1 80C. For each length, situations where the ice
thickness reaches a steady state and where the pipe freezes shut were modeled. The fluid proper-
ties were

k = 1.34x 10 - 3 Cal/cm s C
p = 1.0g/cmg
cp= 1.0 cal/g0C
v = 1.79x 10-2 cm2 /s

and the ice properties were

k = 5.28x 10 - 3 cal/cm s °C

C = 0.4459 cal/cm3 °C

L = 80 cal/cm
3
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The first length of pipe considered was 1.0 m long. An initial ice thickness of 0.05 cm was
assumed; the initial mesh is shown in Figure 37a. The total head drop over the length was 30
cm. First an inlet water temperature of 80 C was assigned. Freezing progressed rapidly; Figure
37b shows the ice configuration just before freeze-up. For each time step the flow rate of the
outlet water was recorded and is plotted against the ice thickness at the outlet in Figure 38.
As the pipe freezes up, the flow rate goes to zero. In Figure 39 the convective heat flux from
the water at the end of the pipe and heat flux through the ice there are plotted against the
thickness of the ice.

Next, for the same length of pipe and head drop an inlet water temperature of 150C was as-
signed. This time the ice formation came to a steady state configuration (Fig. 40). In Figure

2.0-
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Q 1.2

(cal/cm S)

0.8 -

0.4 000000 *000000 0

I I I 0 01
0 0.2 0.4 0.6

D (cm)

Figure 39. Heat flux Q vs ice thickness D at the end of 3
the 1-m pipe, in the case where the pipe freezes up. The
closed circles represent flux from the ice; the open cir-
cles represent flux from the water.
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Figure 40. Final mesh, a steady-state ice profile. I...
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41 the flow rate at the outlet of the pipe is plotted against ice thickness; it comes to a steady
state value near 41.5 cm 3/s. The convective flux and the heat flux through the ice balance as
steady state approaches; this can be seen for the outlet of the pipe in Figure 42.

To obtain a more two-dimensional ice profile, a 5-m-long pipe was also modeled. As before,
the initial ice thickness was assumed to be 0.05 cm (Fig. 43a). For this pipe the head drop was
first assigned to be 30 cm (the same as for the shorter pipe) and the inlet water temperature,
600C. Under these conditions the pipe froze shut. The mesh at an intermediate time is shown
in Figure 43b and the mesh just before freeze-up is shown in Figure 43c. As can be seen from
Figures 44 and 45 the flow rate goes to zero at the outlet as the pipe freezes shut, and the
fluxes do not approach a single value.

To demonstrate a situation where the ice formation approaches a steady value for the 5-m pipe,
a head drop of 400 cm and an inlet water temperature of 30°C were assigned. The same initial
mesh was used. The mesh at steady state is shown in Figure 46. (Note that the ice at the inlet of
the pipe section melted from its original location.) Figures 47 and 48 show that the flow rate
and heat fluxes come to steady values.
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0 0
60- 0

0
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F 40- 00at
(cm 3/s)
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II I I
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Figure 41. Flow rate F vs ice thickness D at the
end of the 1-m pipe, where the ice profile achieved
a steady state.
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Figure 42. Heat flux Q vs ice thickness D at the end of the
1-m pipe, where the ice profile achieved a steady state. The
closed circles represent flux from the ice; the open circles
represent flux from the water.
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NN NEUMANN ANALYSIS OF THE NUMERICAL METHOD

The von Neumann stability analysis is a technique commonly used for investigating the sta-
bility of a numerical method. In performing this analysis one examines the behavior of Fourier
series components as they are propagated numerically and analytically. In this section the anal-
ysis will be conducted for the numerical solution of the heat conduction equation on a moving
mesh. The heat conduction equation, when solved using a moving-mesh technique, acquires a
velocity term that gives the equation the same form as the convection-diffusion equation. The
seasoned analyst will immediately perceive this in eq 8 presented earlier. Now an alternative
method of casting the heat conduction equation into the form of a convection-diffusion equa-
tion will be discussed. Lynch (1982a) shows that this leads to the same mathematical formu-
lation as in eq 8. For simplicity, only the one-dimensional form of the equations will be con-
sidered:

8T a r (37)
t T (37)

For the moving-mesh solution, temperature is a function of both time and a moving location in
space. Let x be a coordinate with respect to a fixed reference frame, and let x. be a coordi.
nate that is attached to a reference point in space, whose motion will be observed: .

T= T=T[x(xo t),tl (38)

From the chain rule,

T o= (-k x+ (-yx)t ()Xo " (39)

Solving for the time derivative of temperature while holding x constant gives

(8.) (5 ) ( ) (Lx) (40)
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Here, (8T/at)x is the time derivative of temperature in the heat conduction equation, so sub-
stituting this result into eq 37 yields

atT " a (a Cx 2  . (41)

The term a2 T/ax2 represents the second derivative of temperature, holding t constant. Note
that (ax/at)xo represents the mesh velocity.

This form of the equation is nondimensionalized by defining the following:

d'r ~dt (42)

T
0 T

AT

where 2 is a characteristic length (i.e. element length) and AT is a characteristic temperature
range. Since the element length 2 is continuously changing in the solution of the problem,
there is no fixed proportion between t and r, but only between dt and d7. Then the non-
dimensionalized form of eq 41 is

aO pe a 20 0 (43)ar a a

where Pe is the Peclet number [(R dx/dt)/a] and dx/dt represents the mesh velocity. In general _
the Peclet number is a function of both space and time. However, in some freezing problems
the front progresses as the square root of time and the mesh movement may be proportional to
the phase front movement, so the element length 2 will grow as the square root of time (2 a -t
The mesh velocity will also be proportional to time (dx/dt cc lvf). Since the mesh velocity is
multiplied by the element length in the definition of Pe, the dependence of Pe on time almost
vanishes when the mesh movement is proportional to the phase front movement. -

In the numerical solution, time will be divided into A7, and space will be divided into At.
It is assumed that the elements are all the same size, although that size changes through time.
Then, because 9 is defned as the element length, At =2 - 1. This means that the system is
always analyzed relative to its current scale. The Peclet number is assumed to be locally con-
stant. Note that the von Neumann analysis will pertain to general diffusion problems on a mov-
ing mesh and does not depend upon any criterion as to what makes the mesh move.

Pinder and Gray (1977) present a von Neumann stability analysis of the convection-diffu-
sion equation. For the finite element solution using linear elements, they derive the expression
for the eigenvalue N' for the numerical solution to the equation. In terms of the nondimen-
sional eq 43, the eigenvalue is

113 [2 + cos(21r/6j]- (le) I- Pe A7 i sin(2ir/6n) + 2A4 [- cos(2/6n)]11 - -

1/3 [2 + cos(2fr/8n) + e I- Pe Ar i sin(2wr/8,) + 2A7 [l-co(29/rn)] 4

where 6, is the nondimensional wavelength, which is the wavelength divided by the element
length, and e represents the degree of implicitness of the numerical solution. Their analysis
also includes expressions for the phase lag and amplitude ratios between the Fourier components
of the numerical and analytical solutions at a time when a wave has progressed one wavelength.
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To provide guidance in choosing the time step and to give a general indication of the accura-
cy of the solution, the Peclet number can be associated with the Stefan number, which controls
the rate of freezing. To this end, a one-dimensional form of eq 2 is examined, assuming that
the unfrozen phase is at the phase change temperature:

di T p
L kt LT (45)

i ax

The nondimensional form of this equation is

a0
Per St L (46)

where Per represents the Peclet number at the phase front and St is the Stefan number (S, =
C ATIL). The term ao/8 represents the gradient near the front. Since AT is chosen to be the
temperature difference between the phase front and a stationary constant temperature boundary,
AO over the frozen zone equals one. Since At E I for one element, At over the frozen zone is
equal to M, where M is the number of elements over the frozen zone. Then 30/3 = JIM, and S
eq 46 becomes

St

Per . (47)

With finite boundaries the fastest mesh motion is located at the front, so the maximum Peclet P
number will be Pe - St/M. In applications involving ground freezing, for example, a large value
for St would be on the order of 1. Therefore, Per < 1.

In the case of infinite boundaries the largest Pe will typically occur at the boundary that
approximates the infinite condition. In a problem where the medium is freezing into an in-
finite unfrozen region, if the distance to the infinite boundary is always kept at about the same
ratio to the frozen thickness, then proportionally greater stretching and greater mesh velocities
occur towards infinity. In this case, over the unfrozen zone, dxldt is increased by some factor
fl, and the element size is increased by some factor f2 relative to their values at the front. The
resulting Peclet number will be increased:

Pei - flf2 St (48)

In the cases examined here, flf2 ranged between I and 400.
Thus, the Stefan number characteristic of the problem determines an approximate range of

Peclet numbers that may be encountered in the numerical solution. The size of the Peclet
number will vary over the mesh, but the largest values are anticipated at the front if there are
no semi-infinite boundaries or at moving semi-infinite boundaries should they occur. _

The choice of time step is also not arbitrary. For Pe - I or larger, convection in the prob-
lem is significant. (The word "convection" is used here to designate apparent convection ef-
fects in the numerical solution, which result from the inclusion of the mesh velocity term in
the governing equation.) Pe represents the nondimensional mesh velocity. To keep the time
step from being too large, reasonable bounds are taken as 0 < AT < lIPem,.. (This prevents
the solution from passing over an entire element in one time step.) For Pe << 1, diffusion -

dominates the equation, and a conservative estimate for Ar is 0.1. (This corresponds to the
nondimensional time it takes for the effect of a step temperature change at a boundary to be
felt across an element.)

The Fourier series components propagate analytically at a wave speed of Pe; however, the
numerical method will propagate different components at different speeds. To examine the
amplitude ratios and phase shifts after the solution has passed through one element, it is
assumed here that the solution is characterized by a nondimensional velocity equal to Pe.
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Then the number of time steps required to move the solution through one element is II /(PeAr)I.
The amplitude ratio R, which is the ratio of the computed amplitude to the analytical amplitude,
becomes

R = [exp .(27r/6n)2 I1 LI (49)

and the phase shift 0 between the computed phase and the analytical phase is

0= [ - 2n (so)

Several Stefan numbers were chosen as a basis for investigations. Compared to ground freez-
ing or the freezing of water, freezing occurs slowly for S, = 1/80, which represents freezing of
water where the temperature difference across the frozen zone is 1 °C. Rapid freezing will
occur for St = 1, which would represent freezing in a fairly dry soil with AT> 1. From these
Stefan numbers eq 48 is used to find the corresponding Peclet number. In all cases it is assumed
that there are M = 5 elements across the frozen zone. Then, for St = 1/80, Pe = 0.0025 when
ftf2 = 1, and Pe = I when ftf2 = 400. For St = 1, Pe = 0.2 when ff 2= 1, and Pe= 80 when
flf2 = 400. For the two extreme cases of Pe = 0.0025 and Pe = 80 and for the intermediate case
when Pe = 1, the eigenvalues, amplitude ratios and phase shifts (a; defined in eqs 44, 49 and 50,
respectively) are examined as a function of wavelength 6 (Figs. 49-51 ).

A system is stable when the eigenvalues defined above do not exceed 1. For all values of
Pe and Ar examined here the system is stable for 0.5 < e < 1.0, as can be seen in Figures 49-
51. In several cases, such as when Pe = 1 and Ar = 0.1, the system is stable for all values of e.
This indicates that A7 in those cases can be considered a tiny time step for the Peclet number.
Thus, for 0.5 < e < 1.0 the moving mesh solution is stable numerically.

Because the frequency content varies from problem to problem, it is impossible to make
specific recommendations about the optimal choice of Ar, for example, but general trends may
be observed and used as rule-of-thumb guidelines.

First consider the case where convection is significant (Pe = 80). Figure 49 shows the be-
havior when A7 = l/4Pe, Ar = I/Pe and A7 = 4/Pe. When e = 0.5, the analytical and numerical
Fourier components systems tend to converge faster to values of 0 and 1 for shorter wave-
lengths, in the phase lag and amplitude ratio plots, respectively, than higher values of e. How-
ever, the shorter wavelengths, which have significant phase lags, are more damped (have lower
amplitude ratios) for e = 1.0 than for lower values of e; thus, the numerical solution may show
less distortion if a higher value of e is used. As Ar is increased from I/4Pe, longer wavelengths
become affected by the mismatch of the analytical and numerical Fourier components.

Now consider the intermediate case where Pe = 1. Figure 50 illustrates the cases for Ar =
1f4Pe, Ar = I/Pe, Ar = 4/Pc and Ar = 0.1. As was the case when Pe = 80, increasing Ar
makes the system less accurate for longer wavelengths. However, now the shorter wavelengths
with significant phase lap are more damped for e = 0.5 than for e = 1.0.

Figure 51 illustrates the situation when Pe = 0.0025 and Ar = 0.1, A7 = 1.0 and A7 10.0.
As with Pe = 1, shorter wavelengths with significant phase shifts are more damped for e = 0.5
than for higher e values. Thus, it appears that when conduction is significant and convection
is of equal or less significance, choosing a value of e closer to 0.5 than to 1.0 may yield a better
numerical result.

Over the entire range of Peclet numbers examined, the shorter wavelengths with significant
phase lap are generally more damped for lower values of Pe, so that the overall solution may
be better for lower values of P and reasonable values of Ar than for higher values of Pe. Thus,
in freezing problems on a moving mesh the highest value of Pe must be considered in assessing
the potential numerical difficulties that may be encountered. For finite boundaries the highest
value of Pe will occur at the freezing front. However, where moving infinite boundaries are
modeled it is more likely that higher values of Pe may occur there than at the phase front.
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Now, for comparison with these results, Peclet numbers present in the numerical solutions
run here and elsewhere will be examined. First consider the two-phase corner simulation pre-
sented earlier.

In the run using the mesh depicted in Figure 27 unacceptable distortions of the temperature
solution occurred in the triangular unfrozen region. In this case the largest element used coin-
cides with the location of the highest mesh velocity. The Peclet number at the comer farthest
from the phase front had a value of Pe, = 0.41. Both of these results were calculated from
numerical results using the definition of the Peclet number: Pe = (QvI), where £ is the element
length, v is the mesh velocity, and a is the thermal diffusivity.

These actual values agree fairly well with values that would be predicted from the Stefan
number. In this problem, St = CAT/L = 4. Then, using eq 47, Per = St/M = 0.8. This is on
the same order of magnitude as Per = 0.41 actually encountered. Since the element at the semi-
infinite comer has an initial length (along the 450 line of symmetry) of 2.9 cm and since the
corresponding length for the element at the phase boundary is 0.12 cm, then f2 = 24. The ratio
of the velocity of the nodes there remained constant throughout the simulation at a value of

= 8. Then the Peclet number predicted by eq 48 is Pei = fif 2 St/M = 154. This is in fair
agreement with the Peclet number of 79 present at the end of the run. It was recommended
that the maximum time step taken be less than AiTmax = 1lPe; using the predicted value of Pe,
this yields ATmax 6.5x 10 From actual values at the semi-infinite corner and the definition
of AT-

Amax Amax .34x10- 2 (200) = 4.6x 10-
242

This illustrates that the largest time step used was still very conservative.
Now consider the two-phase corner simulation that was modeled using the initial mesh illus-

trated in Figure 22. The largest Peclet number in that situation also occurred at the semi-infiite
comer. Now, however, because the element there is smaller, the largest value actually occurring
was Pe = 32. (Pe = 64 would have been predicted.) The maximum time step taken was ATmax
= 4.75x 10-3, an order of magnitude smaller than the smallest time step recommended using
predicted values. This simulation yielded very acceptable results.

The one-dimensional simulations presented earlier involved very small Peclet numbers, main-
ly because the largest velocities were associated with the phase front, and no semi-infinite
boundaries were present. In the Neumann run the maximum Peclet number was Per = 0.011,
and Amax = 15. (The Stefan number was 0.075.) In the radial comparison the Stefan number
was also 0.075, the maximum Peclet number was Pef = 0.02, and AT max = 24.

Peclet numbers encountered by Lynch and O'Neill (1981) also will be examined for a finite
element moving mesh (one-dimensional) used to model heat conduction without phase change
and for one-dimensional two-phase heat conduction with phase change. These Peclet numbers
are inferred from parameter values and graphs presented in Lynch (1982a). Also, Hermitian
elements were used. One of these elements is assumed here to be roughly equivalent to the use
of three linear triangular elements. Then, for the heat conduction without phase change the
largest Peclet number is estimated to be Pe = 0.5, and the maximum time step is Armax = 0.04.
(This is considerably less than AT = 1/pe.) For the heat conduction with phase change, at the
phase front Per = 0.02, and the largest Peclet number appeared at the semi-infinite boundary,
where Pei = 0.4.

The first observation from these results is that the numerical distortions occurred for the
IL largest numerical Peclet value encountered in these simulations, Pe = 78. (The two-phase comer

problem was also run for a case where Pe Max = 250, and numerical distortions occurred.) The
Peclet numbers for the one-dimensional problems were all on the order of I or less, and no
distortions occurred. In the two-dimensional case a Peclet value of 32 occurred with a solution
where numerical results were acceptable. However, for the simulations where Peclet values of
79 and higher were observed, numerical difficulties were present. The von Neumann analysis
supports this observation; phase shift and amplitude ratios generally get worse as the Pe number
is increased.
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The von Neumann analysis also indicates that the solution will be less accurate as the time
steps increase. However, the time steps encountered here were all on the small end of the scale
of time steps investigated in the analysis. It was observed in the unacceptable two-phase simu-
lations that decreasing the size of the time steps by a factor of four made almost no difference
in the numerical solution.

It has therefore been observed that the occurrence of high Peclet numbers in the finite ele-
ment moving-mesh solution to the heat conduction equation may be linked with numerical dis-
tortion of the temperature distribution. The limits of this occurrence when a moving mesh is
used will be the subject of further research.

COMPARISON OF COMPUTATIONAL EFFORT:
TRANSFINITE MAPPINGS VS EQUATIONS OF ELASTICITY

A topic of concern in moving-mesh methods is specifying the evolution of the interior mesh
as the solution progresses. Not only should the geometry of the mesh be satisfactory, but the
method used to specify the geometry should be computatioaly efficient. In this section the
number of operations required to generate a square mesh using transfinite mappings is compared

to the number required if the mesh is specified by solution of the equations of elasticity. Lynch
(1982a) discusses a two-dimensional moving-mesh solution in which he recurrently solves the
equations of elasticity to specify interior node motion, but the number of computations required
are not discussed.

The transfnite mappings will be examined first. The nodes in the sides and comers of the
mesh have known locations, which were specified either by movement of the phase front or by
some other designated positioning along the boundaries. For simplicity, consider a square region
where there are N+l elements along the side; then there are N (non-comer) nodes along each
side. Thus, locations of N 2 interior nodes must be specified. From eq 23 and the assumption that
u and v are specified by the preferred method discussed earlier [so that the coefficients such as
(1- v) are stored], it is evident that the method will require 24 N 2 multiplications and 14 N2

additions. The number of operations is on the order of N 2 because there are A' interior nodes,
and the location of each interior node depends only on eight boundary node locations. This
number is required regardless of whether large or small boundary excursions have occurred.
Storage of the edge nodes and their coefficients requires 8N+8 locations.

To solve the equations of elasticity the solution of a banded matrix is required. Again with
a square grid with N elements along each side the matrix will be N2 x (N+3) if square elements
are used. Obviously the computational effort required depends on which of the many matrix
solution techniques are used.

Bettess (1981) estimates that the number of arithmetic operations necessary for solving a
banded matrix is (N+I)2(N+3) 2 /2. However, he does not indicate which matrix solution tech-
nique this represents. Westlake (1975) lists operation counts for a variety of techniques, all
used to solve a full N2 x N2 matrix; the number of operations ranges from on the order of N'
to N'.

Lynch (1982a) uses subroutine Solve, which was mentioned earlier in the discussion of Femove.
Solve solves a banded matrix using the Doolittle method to upper-triangularize the matrix, then
modifies the vector on the right side, and performs the back substitution. If the orientation of
boundaries where tangential motion is allowed is constant, then the triangularization need only
be performed once. This represents the best case for minimum computations for this method.
The worst case would be to perform the whole process for each time step. From Solve and the
assumption that the computer effort for all arithmetic operations is equal (in fact, the level of
effort is machine-dependent), it may be seen that the upper triangularization requires operations
on the order of N3 , and that modifying the load vector and the back substitution requires opera-
tions on the order of N2. The storage requirement is N2 x NHB, where NHB represents the half-
bandwidth. If the nodes of the square grid are labeled consecutively row-by-Tow, NHB = (N+3)/2.
Thus, the storage requires a number of locations on the order of N 3 .
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Both the transfinite mapping and solution of the equations of elasticity, then, require on the
order of N2 operations for the best case in solving the equations of elasticity (which is also a
special case). However, the elasticity conditions require substantially more storage space than
the mappings. In the worst case using subroutine Solve (when the triangularization needs to be
performed for each time step) the equations of elasticity require N3 computations, substantially
more than the transfimite mappings. The method of transfinite mappings, then, is at least as
efficient computationally as the solution of the equations of elasticity, and in many cases it is
far more efficient, depending on the procedure used in matrix solution for the equations of
elasticity. The method of transfinite mappings also requires substantially less storage space.

CONCLUSIONS

It has been demonstrated that the use of transfinite mappings in conjunction with a moving-
mesh finite element method yields readily acceptable results for modeling freezing phase change
in conduction heat transfer. A program was developed that uses this method; it is capable of
modeling two-dimensional situations, either in Cartesian or (r, z) cylindrical coordinates. Solu- " -
tions generated using this method compare well to analytical solutions. Excellent results were
obtained when modeling a two-dimensional situation for which experimental results were avail.
able. The usefulness of having the phase boundary always coincident with element boundaries
was demonstrated by modeling the freezing of flow in a pipe.

Some subtleties and limitations of the use of transfinite mappings in mesh generation were
investigated. In general the method seems to provide very good results. In modeling phase
change the use of transfinite mappings represents the most efficient general means of specifying
interior mesh motion used to date.

When using a moving finite element mesh to model heat conduction, care must be taken to
ensure that the Peclet number based on mesh velocity does not become too large anywhere in
the mesh, or numerical distortions of the temperature solution may occur. The Peclet number
was linked to the Stefan number, and some very general guidance was given so that the degree
of numerical difficulty can be estimated before running the program.
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